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Abstract-The problem of heat transfer for a Bingham plastic in laminar tube flow is studied with axial 
conduction both excluded and included. It is demonstrated that the assumption of ignoring axial conduction 
for Peclet numbers greater than 100 is erroneous, especially near the start of the heated zone of the pipe. 
A new technique, based on the Sturm-Liouville theory, is introduced to solve these problems. In contrast 
to other techniques previously published, it requires only simple eigenvalues and eigenfunctions and is 
easily generalized to include the effects of axial conduction-a difficult proposition for semi-analytic 

methods. 

1. INTRODUCTION 

A BINGHAM fluid is a substance which exhibits a yield 
stress zy that must be overcome before it will flow. 
Examples of such fluids are drilling mud, paint and 
grease. When these materials flow in a pipe, there may 
be a central region which moves as a solid (plug flow) 
but near the wall the usual parabolic velocity profile 
of a Newtonian fluid is observed. 

This paper studies the heat transfer properties of 
the above fluids where axial conduction is first 
excluded and later included. The solution technique 
used is that proposed previously by Do [ 11 and John- 
ston and Do [2] based on the Sturn-Liouville integral 
transform theory and has the advantage over other 
solution methods suggested [3] that it requires only 
simple eigenvalues and eigenfunctions. Further, it is 
a simple matter to include the effects of axial conduc- 
tion, the main purpose of this article. 

Section 2 describes the dimensionless governing 
equation of heat transfer in a Bingham fluid with 
axial conduction included and Section 3 develops the 
solution where axial conduction is ignored. Section 4 
reproduces the solutions of ref. [3] and looks at the 
number of terms required for a solution. The effects 
of axial conduction are included in the solution 
described in Section 5. Finally, the equations are 
solved for various Peclet numbers Pe and the results 
are considered in light of the assumption that axial 
conduction can be ignored for Pe > 100 [3]. 

2. GOVERNING EQUATIONS 

The stress induced velocity gradient for a Bingham 
plastic in pipe flow is of the form [4] 

dU 
0 for z < zY 

-= 
dr -_:(r--ig) forr>t, 

(1) 

where U is the axial velocity component, r the radial 
coordinate, r the local shear stress, zY the yield stress 
and q the Bingham viscosity. For constant properties, 
the dimensionless velocity profile can be expressed as 

2(1-c)” 

l-;+; 

-y*-2c(l -y)) 

l-;+f 

(=u,) 

(=u*) 

(2) 

where c is the ratio of the yield stress to wall shear 
stress (z,/T,). Note that c = 1 corresponds to plug 
flow (U = U,,,,,) and c = 0 corresponds to laminar 
how. 

If viscous dissipation is ignored, the steady flow 
constant property form of the energy equation is 

The boundary conditions required to completely 
specify the problem are 

g (x, 0) = 0 

t(x, R) = t, (4b) 

t(O,r) = 1, (&I 

t(a3, r) = t, (44 
where it has been assumed that the fluid eventually 
attains the wall temperature. These equations and 
boundary conditions can be expressed in dimen- 
sionless form as 

u(y) ae 1 a a0 

- 0 

1 aze 

2 aZ y ay %yJ +FmP (5) 
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NOMENCLATURE 

c ratio of yield stress to wall stress, zY/rW u,,,, maximum axial velocity 

c P specific heat at constant pressure u Ulv,, 
J,, J, Bessel functions X axial coordinate 
k thermal conductivity I dimensionless radius, r/R 
K,(l,, J') eigenfunction z dimensionless axial coordinate, (x/R)/Pe. 
N number of terms required for 

convergence 

NM, local Nusselt number Greek symbols 

Nil,,, average value of Nu, between entrance G! thermal diffusivity 
and axial position x Bingham viscosity 

Pe Peclet number, 2Ua,,R/a ;I dimensionless temperature, 

r radial coordinate (tW - t(x, r))/(t, - &) 
R radius of pipe 0, dimensionless bulk fluid temperature, 

t(x, r) temperature (rw - Q/(&V - tP_) 
1, bulk fluid temperature i’, eigenvalue 

rL. entrance temperature P fluid density 

t, wall temperature r local shear stress 

U(r) axial velocity rW wall shear stress 

U,” average axial velocity rY yield shear stress. 

;,” (2 0) = 0 

O(z, I) = 0 

O(0, y) = 1 

O(m,y) = 0. 

(64 
initial condition (7a). From the second-order radial 

differential operator 

(6b) 

(74 

(7b) and its associated homogeneous boundary conditions 

Equation (5) has been solved elsewhere [3,5] where 
axial conduction was neglected. The approach used 
was a classical separation of variables technique lead- 
ing to a Sturn-Liouville eigenvalue problem. The 
drawback associated with this approach is that the 
eigenproblem must be solved numerically to obtain 
the eigenvalues and eigenfunctions. This paper, using 

the approach already successfully used by Do [ 11 and 
Johnston and Do [2], solves equation (5) by exploiting 
the eigenproblem which arises from the physical 
geometry of the situation (in this case a pipe). The 
resulting eigenvalues and eigenfunctions are in terms 
of Bessel functions. It will be demonstrated that this 
approach is easily implemented and that including 
finite Peclet numbers is a minor extension. The paper 
also shows that non-smooth velocity profiles can be 
handled by this technique. 

3. SOLUTION METHOD 

Consider the situation where axial conduction is 
ignored, that is large Pe. The governing equation 
becomes 

(8) 

subject to radial boundary conditions (6) and axial 

(6) define the eigenproblem 

(9) 

Wd 

K,( 1) = 0. UOb) 

The solution for this eigenproblem is 

KAY) = JdLY) (11) 

where the eigenvalues are the solutions of the tran- 
scendental equation 

JO(&) = 0. (12) 

Next, define a finite Sturn-Liouville integral trans- 
form for the kernel K,, 

(0, KJ = 
I’ 

YQ,Y)K,(Y) dY (13) 
0 

and its inverse 

(14) 

Since the eigenproblem is based only on the radial 
differential operator, substituting this series rep- 
resentation of 0 into the left-hand side of equation (8) 
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results in 

Application of the integral transform (13) to this equa- 
tion, gives 

(u(,W&), K,(Y)) <e K > 

<K,>KJ ’ n 1 
= -5,%L) (16) 

which in turn can be expressed in matrix form by 
defining the following vectors and matrices : 

@ = {(RKj} 

as 

(17) 

Equation (17) is a system of first-order linear 
differential equations with initial conditions obtained 
by applying the integral transform (13) to equation 
(7a), i.e. 

z = 0, 0 = 00 (18) 

where O0 = { ( 1, K,,,)}. The solution of equation (17) 
is 

@ = @“emA-‘“:. (19) 

Finally, given 0, the inverse, 8, is evaluated from 
equation (14) or can be expressed in vector form as 

e=f-63 (20) 
where 

(21) 

Other quantities of interest, the bulk fluid tem- 
perature eb and local and average Nusselt numbers, 
NM, and Nu,, respectively, are readily determined 

eb = 2 
s 

I yu(y)0 dy 
II 

cD (@,K”) ’ 
= 2n;, (K,, K,,) ,, y”(y)Kn dy s 

(22) 

Nu, = - 2 e (z, 1) 
eb ay 

(24) 

Two points should be emphasized at this stage. 
First consider the evaluation of (u(y)K,, K,,,). The 
definition of the integral transform implies that 

’ (u(YVL, Km) = s u(Y)J~(~,Y)J~(~,Y) dy (25) 
0 

where equation (I 1) has been employed. This inte- 
gral must be evaluated in two parts due to the non- 
smooth velocity profile, that is 

= <U(Y)& 2 Km) = 
j 

u,(YVO(S,YVO(LY) dy 
0 

+ 

s 

/' ud~Vo(L~Vo(tm~) dy. (26) 

This presents no major difficulties and a detailed 
evaluation of all integrals is included in the appendix. 

The second point deals with the size of the system 
of linear equations (19). So far all matrices and vectors 
have been assumed infinite in dimension but for obvi- 
ous practicalities this cannot be the case. Since the 
diagonal elements, unn, of A are greater than the off 
diagonal elements (a trend which is accentuated as n 
increases), equation (19) can be approximated by a 
finite system of size N (i.e. A is diagonally dominant 
for n > N). Hence these matrices and vectors can be 
expressed as 

@= {<e,K,),(e,K*),..., (6 KN)lT 

D={&&,;n,m=l,2 ,..., N} 

@,={(l,K,,);n= I,2 . . . . . N]‘. 

Equation (19) now gives the solution for the N-dimen- 
sional vector 0. 

To find (0, K,,) (n = N+ 1, N+2,. . , co), the diag- 
onal dominance of A is exploited. Hence equation 
(16) can be approximated by 

; ; (“(yypyyy)) (0, K”) = -p<e, K”) 

[ n> ” 1 
(27) 

for n = N+ 1, N+2,. . , co. The initial condition for 
equation (27) is 

z = 0; (e,Kn) = (1, K,,) 

and so, the solution of equation (27) is 

(0, K,) = (1, K,) e-“-‘5.‘z (28) 

for n = N+ 1, N+2,. . . , co. 
For a given N, (O,K,,) for n=1,2 ,..., N are 

obtained from equation (19) and (0, K,) for 
n= N+l,N+2,... are calculated from equation (28) 
until the infinite series (14) has converged. To choose 
the final value of N, equations (19) and (28) are solved 
in this manner with increasing N until two con- 
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secutive values of Or,, Nu, or Nu, are arbitrarily close. 
Typically, N of the order of 30 gives accurate results 
for most values of z. A detailed discussion of this is 
given in the next section. 

When c = I, the second integral in equation (26) 
reduces to 0 and therefore 

(0 ?72 # Iz 
(U(Y)&, Km> = 

i 
, m = n 

giving the usual infinite series for plug flow. Hence, 
any value of N will yield an exact answer. 

4. SOLUTION WITHOUT AXIAL CONDUCTION 

To demonstrate this method it was decided to first 
repeat the calculations of Blackwell [3] and indicate 
the number of terms required to obtain a relative 

convergence of 0.0001% . The case of plug flow (c = I) 
degenerates to a simple infinite series solution requir- 
ing no matrix manipulation. 

Tables l-6 give the values of Nu,, Nu, and Qb for 
six values of c. The most interesting observation from 
these tables concerns the number of terms required 
for solution, N. For all values of c, as z increases 
N decreases, as would be expected, except that, for 
z > 0.1, N is the same for a given value of c. The 
behaviour of N as c increases changes with the value 
of z. For large values of z, the number of terms is 
almost constant but with a slight increase with increas- 
ing c. This trend is accentuated as z decreases to 
0.0001. For z = 0.0001, the tendency is reversed. 

5. AXIAL CONDUCTION 

When axial conduction is included equation (5) is 
solved in full, subject to boundary conditions (6) and 
(7). A series solution of the form (4) is again assumed 
with the same kernel and eigenvalues. Substitution of 
this series into equation (5) and application of the 

Table 1. Heat transfer results for flow of a Bingham plastic : Table 3. Heat transfer results for flow of a Bingham plastic : 
c = I .o (plug flow) c = 0.6 

Table 2. Heat transfer results for flow of a Bingham plastic : 
C’ = 0.8 

0.000 I 
0.0002 
0.0004 
0.0010 
0.0020 
0.0040 
0.0100 
0.0200 
0.0400 
0.1000 
0.2000 
0.4000 
1 .oooo 
2.0000 
4.0000 

I0.0000 

Nu,,, 

39.923 60.566 0.98797 II9 

31.451 47.798 0.98107 94 
24.715 37.699 0.97030 80 
18.080 27.527 0.94644 65 
14.272 21.702 0.91686 55 
I 1.300 17.126 0.87196 45 
X.367 12.567 0.77776 35 
6.777 10.002 0.67026 33 
5.704 8.068 0.52442 24 
5.1 I2 6.400 0.27802 23 
5.067 5.738 0.10074 23 
5.066 5.402 0.01328 23 
5.066 5.200 0.00003 23 
5.066 5.133 0.00000 23 
5.066 5.099 0.00000 23 
5.066 5.079 0.00000 10 

integral transform (13) yields the second-order differ- 

ential equation 

which can be expressed in terms of previously defined 
vectors and matrices as 

with boundary conditions 

_7=0; @=@O 

Z-+cO,O-O. 

(3la) 

(3lb) 

Again A is diagonally dominant and so equation (30) 

81.365 161.154 0.96828 
58.008 114.415 0.95527 
41.502 81.376 0.93697 
26.876 52.074 0.90109 
19.531 37.322 0.86132 
14.372 26.914 0.80629 
9.884 17.731 0.70144 
7.744 13.174 0.59040 
6.437 10.063 0.44708 
5.817 7.620 0.21785 
5.783 6.705 0.06843 
5.183 6.244 0.00677 
5.783 5.968 0.00001 
5.783 5.875 0.00000 
5.783 5.829 0.00000 
5.783 5.802 0.00000 

0.0001 33.313 50.483 0.98996 98 
0.0002 26.262 39.863 0.98419 83 
0.0004 20.704 3 1.464 0.97515 70 
0.0010 15.134 22.996 0.95505 57 
0.0020 I 1.913 18.151 0.92997 48 
0.0040 9.521 14.351 0.89154 40 
0.0100 7.150 10.590 0.80912 32 
0.0200 5.892 8.502 0.71172 27 
0.0400 5.038 6.942 0.57385 22 
0.1000 4.539 5.592 0.32679 18 
0.2000 4.494 5.048 0.13275 18 
0.4000 4.494 4.771 0.02200 18 
1 .oooo 4.494 4.604 0.00010 18 
2.0000 4.494 4.549 0.00000 18 
4.0000 4.494 4.521 0.00000 I8 

10.0000 4.494 4.504 0.00000 I2 
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Table 4. Heat transfer results for flow of a Bingham plastic : Table 6. Heat transfer results for flow of a Bingham plastic : 
c = 0.4 c = 0.0 (laminar flow) 

z Nu, NW,, eb N 

0.0001 30.525 46.250 0.99080 96 0.0001 28.256 42.813 0.99148 92 
0.0002 24.062 36.523 0.98550 78 0.0002 22.273 33.811 0.98657 76 
0.0004 18.972 28.824 0.97721 65 0.0004 17.556 26.681 0.97888 62 
0.0010 13.861 21.064 0.95875 53 0.0010 12.825 19.499 0.96176 50 
0.0020 10.957 16.623 0.93567 45 0.0020 10.131 15.382 0.94033 42 
0.0040 8.703 13.137 0.90024 38 0.0040 8.037 12.150 0.90737 35 
0.0100 6.521 9.683 0.82394 30 0.0100 6.002 8.942 0.83623 28 
0.0200 5.365 7.763 0.73306 26 0.0200 4.916 7.155 0.75112 24 
0.0400 4.585 6.331 0.60261 22 0.0400 4.173 5.812 0.62805 20 
0.1000 4.126 5.093 0.36107 18 0.1000 3.710 4.640 0.39532 17 
0.2000 4.082 4.593 0.15929 18 0.2000 3.658 4.156 0.18972 17 
0.4000 4.081 4.337 0.03114 15 0.4000 3.657 3.906 0.04394 17 
1.0000 4.081 4.183 0.00023 15 1 .oooo 3.657 3.757 0.00055 17 
2.0000 4.08 1 4.132 0.00000 15 2.0000 3.657 3.707 0.00000 17 
4.0000 4.08 1 4.106 0.00000 15 4.0000 3.657 3.682 0.00000 17 

10.0000 4.081 4.091 0.00000 15 10.0000 3.657 3.667 0.00000 17 

can be approximated by a finite N x N system of 
second-order differential equations which can be 
reduced to a first-order system (of size 2N x 2N) by 
defining 

and 

The result is 

where 

d@ 
-_=p 
dz 

dS-2 
-== 
dz 

Table 5. Heat transfer results for flow of a Bingham plastic : 
c = 0.2 

* NUX N% eb N 

0.0001 29.074 44.051 0.99123 
0.0002 22.917 34.786 0.98619 
0.0004 18.063 27.452 0.97828 
0.0010 13.194 20.062 0.96067 
0.0020 10.427 15.829 0.93865 
0.0040 8.275 12.504 0.9048 1 
0.0100 6.187 9.207 0.83182 
0.0200 5.076 7.372 0.74463 
0.0400 4.319 5.998 0.61887 
0.1000 3.861 4.803 0.38269 
0.2000 3.814 4.314 0.17808 
0.4000 3.813 4.063 0.03875 
1 .oooo 3.813 3.913 0.00040 
2.0000 3.813 3.863 0.00000 
4.0000 3.813 3.838 0.00000 

10.0000 3.813 3.823 0.00000 

94 
76 
63 
51 
43 

:; 
24 
20 
18 
17 
17 
17 
17 
17 
17 

E= [ $0 + p;i] (35) 

Equation (34) is solved by obtaining the eigenvalues 
CQ and eigenvectors vi of the matrix E, giving a solution 

C2 of the form 

a= i p,v,eDLJ (36) 
i= 1 

where the coefficients pi are to be determined from 
boundary conditions (31). For positive eigenvalues, 
the corresponding /Ii must be zero to satisfy boundary 
condition (31 b). The remaining /II are determined 
from boundary condition (31a) and so II can be ex- 
pressed as 

(37) 

where g is defined as 

g = {ea?, tli < 0). (38) 

Hence the first N terms in the infinite series solution 

are given by 

0 = sg. (39) 

The remaining terms are obtained by solving the 
differential equation 

subject to the boundary conditions 

z = 0; <e,K,) = (l,K,J (414 

z-co; (O,K,)+O. (4lb) 
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Finally, this gives 

(0. K,,> = (I ~ K,,) 

and so 0, d,, Nu, and Nu, can be determined as 
described previously. 

6. SOLUTION WITH AXIAL CONDUCTION 

The aim of this paper is to demonstrate the validity, 

or otherwise, of the assumption that axial conduction 

can be ignored for values of Pe > 100 [3]. 
The method of the previous section was applied for 

Pe = 10, 100 and 1000 over the z range 0.001 to 10 
and for c = 0, 0.2, 0.4, 0.6 and 0.8. Figure 1 shows a 
typical plot of Nu, vs z for c = 0. (Plots for other 

values of c are similar.) Clearly, as Pe increases the 
curves approach that of the solution for infinite Pe 
obtained in Section 4. With Pe = 1000, the curves are 
coincident. As z increases, curves for lower values of 
Pe converge to the curve for infinite Pe. The difference 
between the curves for Pe = 100 and infinite Pe at 

z = 0.001 is about 30 % This could lead to substantial 
errors. 

Figure 3 is a plot of 0, vs z for c = 0.4 (this is 

representative of all values of c). Again, when 
Pe = 1000 the solution curve is identical to that 
obtained when axial conduction is ignored. There is a 
difference between the curves for Pe = 100 and infinite 

Pe at small values of z. The differences are accentuated 
when considering the curve for Pe = 10 and they exist 

A plot of Nu, vs z for c = 0.2 (Fig. 2) again shows 
that Pe = 1000 is an adequate threshold for ignoring 
axial conduction. Comparing NM, curves for 
Pe = 100 and infinite Pe shows about a 20% differ- 
ence at z = 0.001, but this approaches zero as z 
increases. Also, as c -+ 1, the error decreases. 
However, for Pe = 10 the difference does not decrease 
to zero with increasing z, as with the Nu, curves. 

.Ol .I 1 10 

Dimensionless Axial Distance (x/R)/Pe 

FIG. 1. Local Nusselt number vs dimensionless axial distance 
(c = 0.0). 

0 

Dimensionless Axial Distance (x/Fi)/Pe 

FIG. 2. Average Nusselt number vs dimensionless axial dis- 
tance (c = 0.2). 

for all but large values of z. Again the only safe choice 
for ignoring axial conduction is when Pe > 1000. 

These figures show that a valid threshold for ig- 
noring axial conduction is Pe = 1000. Differences do 
exist for lower values of Pe at small values of z. In 
fact, potentially dangerous errors could result if axial 
conduction is ignored when Pe is of the order of 100, 
especially at small z. 

The result of retaining Pe constant (= 10) and 
allowing c to vary in a Nu, vs z plot is shown in Fig. 
4. For small values of z, Nu, covers only a narrow 

range which spreads as z increases. As Pe increases 
the range of Nu, values grows for small z [3]. 

Finally. Tables 779 give the number of terms, &‘, 

required to obtain convergence as described pre- 
viously for Pe = 10, 100 and 1000. As Pe decreases, 
the number of terms required to obtain convergence 
increases, especially for small values of z. At larger 
values of z, N is independent of Pe, and is always 
nearly independent of c. 

Figure 5 is a plot of Nu, vs z for Pe = 100. As Pe 
increases the ranges of values of Nu, decreases at 
small values of z and spreads with decreasing Pe. 
Figure 6 is a plot of & vs z for Pe = 10. This is typical 
for all values of Pe. 

Dimensionless Axial Distance (x/R)/Pe 

FIG. 3. Bulk fluid temperature vs dimensionless axial distance 
(C = 0.4). 
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I: 
Table 7. Number of terms required for convergence : Pe = 10 

a . c - 0.4 
c 

z 0.0 0.2 0.4 0.6 0.8 

‘R 0.001 141 141 142 142 147 
0.002 99 99 99 98 103 
0.004 63 63 63 64 66 
0.010 36 36 37 38 42 
0.020 27 27 28 29 33 
0.040 21 22 22 23 25 
0.100 18 17 18 18 23 
0.200 16 17 18 18 23 

.Ol .1 1 0.400 17 17 15 17 23 
Dimensionless Axial Distance (x/R)/Pe 1.000 16 17 16 18 23 

FIG. 4. Local Nusselt number vs dimensionless axial distance 2.000 16 17 16 18 23 

(Pe = 10). 
4.000 16 17 16 18 23 

10.000 16 17 16 18 23 

Table 8. Number of terms required for convergence: 
Pe = 100 

z 0.0 0.2 
‘ 

0.4 0.6 0.8 

0.001 53 53 55 58 64 
0.002 41 42 43 45 52 
0.004 34 35 25 37 44 
0.010 26 26 27 29 34 
0.020 23 22 24 27 26 
0.040 19 19 21 22 24 
0.100 18 18 18 18 23 
0.200 17 17 18 18 23 

L 
.I .Ol .l 1 10 0.400 17 17 18 18 23 

Dimensionless Axial Distance (x/R)/Pe 
1.000 17 17 18 18 23 
2.000 17 17 18 18 23 

FIG. 5. Average Nusselt number vs dimensionless axial dis- 4.000 17 17 18 18 23 
tance (Pe = 100). 10.000 17 17 18 18 23 

Table 9. Number of tetms required for convergence 
Pe = 1000 

c 

z 0.0 0.2 0.4 0.6 0.8 

.6 
0.001 45 45 47 50 57 
0.002 37 38 40 42 48 

.5 0.004 31 32 33 36 43 

.4 0.010 25 26 27 29 34 

.3 0.020 23 22 25 27 32 
0.040 20 20 22 22 24 

.2 0.100 17 18 18 18 23 

.l 0.200 16 17 18 18 23 
0 0.400 16 17 18 18 23 

.Ol .l I 10 1.000 16 17 18 18 23 
Dimensionless Axial Distance (x/R)/Pe 2.000 16 17 18 18 23 . 

4.000 16 17 18 18 23 
Fxc;. 6. Bulk fluid temperature vs dimensionless axial distance 10.000 16 17 18 18 23 

(Pe = 10). 
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7. CONCLUSION 

This paper has presented a method based on Sturm- 
Liouville integral transforms to solve the equation 
for heat transfer in a Bingham fluid where axial con- 

duction has been both excluded and included. The 
advantage of the method presented is that only simple 

eigenvalues and eigenfunctions are required and there 
is no need to solve the associated eigenproblem 

numerically as with other methods. The effectiveness 
of this technique for dealing with velocity profiles 

which are nonsmooth has also been demonstrated. 
It has also been shown that in order to ignore axial 

conduction the Peclet number, Pe, must be greater 
than 1000. This is especially true for small values of z 
(in this case down to z = 0.001). Axial conduction can 
also be ignored when Pr = 100, but only when z is 
greater than 0.01. In fact, it could be postulated that 
axial conduction can be ignored when the axial pos- 
itions of interest are greater than the inverse of the 
Peclet number. Ignoring this rule of thumb can lead 
to 20-30% differences in local and average Nusselt 
numbers over an order of magnitude change in axial 
position. 

REFERENCES 

1. D. D. Do, A method for solving diffusion and reaction 
problems with nonuniform activity catalysts, Chem. 
Engng Sci. 39, 1519 (1984). 

2. P. R. Johnston and D. D. Do, A new method for solving 
a large class of heat and mass transfer problems, C/tern. 
Engng Commun. 49,247-27 1 (1987). 

3. B. F. Blackwell, Numerical solution of the Graetz prob- 
lem for a Bingham plastic in laminar tube flow with con- 
stant wall temperature, J. Heat Transfer 107, 466468 
(1985). 

4. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport 
Phenomena. Wiley, New York (1960). 

5. E. H. Wissler and R. S. Schecter, The Graetz-Nusselt 
problem (with extension) for a Bingham plastic, Chem. 
Eqng Prog. Stwlp. Se,-ie.v No. 179 55, 203 208 ( 1959). 

6. Y. L. Luke, Integrals of Bessel Functions. McGraw-Hill, 
New York (1962). 

APPENDIX. EVALUATION OF INTEGRALS 

To evaluate (UK,, K,), integrals involving powers of y 
and combinations of Bessel functions must be evaluated [6] 

(AlI 

S’ ~Jn(in.4 d.v = in (J,(t,)--(‘J,(O)) W) 
< 

s YJo(LY)Jo(LY) dJ 
0 

(A3) 

,I & [5,JI(5,C)J,(5,C)-SmJo(mC)J,(TmC)1 
m n 

= 5, f t, 

:[Ji(5,)-(.*J~(5,c)-c2J~(5,c)1 

i”, = t, (A4) 

s 
y’J”(Ly) dy = ~(51J,(e.,-e,zc3J,(r.c)-4J,(r,) 

n 

+4J,(~,c)-2~,c2J,(5,c)) 645) 

s 
c y3J%5nyF-b = - f J,(T.dJdSn+ &Ji(tn)-~~J~~C,c), 

n 

CiJ~(tnC)+$J:(S.c) 
n 

- ~J,(t,c)J,(~.c,+~~J:(r.c) 646) 
> 

I’ 
~~Jo(Sny)Jo(Sm.~) dy 

c 

I’ 
y’J~(5,y)dy=:,F,(:.l,i;l,l,l,:;-1) 

-~~l~~(:,l,i:l,l,l,~;-c’). (A8) 

CONDUCTION AXIALE ET PROBLEME DE GRAETZ POUR UN FLUIDE DE 
BINGHAM EN ECOULEMENT LAMINAIRE DANS UN TUBE 

Resum&Le probltme du transfert thermique pour un fluide de Bingham en ecoulement laminaire dans 
un tube est ttudie avec conduction axiale soit negligee, soit prise en compte. On montre que l’hypothese 
de conduction axiale negligee pour les nombres de P&let superieurs a 100 est erronee, particulierement 
pres du debut de la zone chauffee du tube. Une technique nouvelle, basee sur la theorie de Sturm- Liouville, 
est introduite pour rtsoudre ces problemes. Contrairement a d’autres techniques deja publites, elle demande 
simplement les valeurs propres et les fonctions propres et elle est facilement gtntralisable pour inclure les 
effets de la conduction axiale, ce qui est une affaire difficile pour beaucoup de methodes semi-analytiques. 
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AXIALE W;iRMELEITUNG UND DAS GRAETZ-PROBLEM IN EINEM 
BINGHAM-MEDIUM BEI LAMINARER ROHRSTROMUNG 

Zusammenfassung-Der WCrmetibergang in einem Bingham-Medium bei laminarer Rohrstriimung wird 
mit und ohne Beriicksichtigung der LCngswCmeleitung untersucht. Es wird gezeigt, daI3 die Vernach- 
lissigung der Langswirmeleitung fur Peclet-Zahlen grBl3er als 100 zu Fehlern fiihrt-insbesondere zu 
Beginn dcr beheizten Zone im Rohr. Es wird ein neues Verfahren zur Losung dieser Probleme auf der 
Grundlage der Sturm-Liouville-Theorie vorgestellt. Im Gegensatz zu anderen bereits veroffentlichten 
Verfahren wcrden nur einfache Eigenwerte und Eigenfunktionen benotigt. Es IaBt sich leicht zur Beriick- 
sichtigung der Langswarmclcitung verallgemeinerndies ist tin schwieriges Problem fur einige halb- 

analytische Verfahren. 

AKCHAJILHAII TEHJIOI-IPOBOAHOCTb M 3A&4’IA rPETqA JJJIJI I-IJIACTIGIECKOR 
CPEHbI EMHI-AMA HPM JIAMHHAPHOM TE’4EHHH I-IO TPYSAM 

boTaunn-Mccnenyexn 3wasa TennonepeHoca n.al~ nnacravecKoii ~py6u IGniraMa npw nahmtiapHoh4 
TeqeHWW no Tpy6ahi KaK c yreTobt, Tax w 6e3 yYeTa KOHL~YKTHBHO~O aKcaanbHOr0 TemonepeHoCa. noKa- 

3aHO,',TO II&EHe6pXCeHHe aKC&lUbHOii TeIIJ‘O~pOBO~HOCTbH) B CnyYae 3HaWHHii YHCen neKJIe,I&XBbI- 
uaH)uusx 100, xwrnexfi OUIW~O~HLSM, OCO6eHHO y Havana HarpeToro ysacxa ~py6u &IS peluewn 
&iCCJlenyeMbIX 3ana9 HC"Onb3yeTCR HOBaIl MeTOLWKa Ha OCHOBe TeOpHH mTypMa-~HyBHJUlff. B OTJIHYHe 
OT paHee llpeAJIO;lte~~bIX,naHHbIi MeTOn Tpe6yeT TOnbKO ~pOCTbIXCO6CTBeHHbIX 3Ha'ieHHfi W CO6CTBeH- 

Hbrx @~HK& H nerrco o6o6maercn rfa cnysai y9eTa @$~KTOB aKcmnbHoii TemonpoBonHocT8. ST0 


